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A B S T R A C T  

Multiplicatively large sets are defined in (l~I, .) by an analogy to sets of 
positive upper density in (N, +). By utilizing various ergodic multiple 
recurrence theorems, we show that multiplicatively large sets have a rich 
combinatorial structure. In particular, it is proved that for any multi- 
plicatively large set E C 1~I and any k E N, there exists a, b, c, d, e, q E l~l 
such that 

{qJ(a+id) :O~_i , j~_k}C E and {b(cTie) j :O~_i , j~_k}C E. 

1. I n t r o d u c t i o n  
r 

For r E N, let N = Ui=l  Ci be a par t i t ion  of the positive integers. By van 

der Waerden ' s  theorem ([W]), one of the Ci contains arbi t rar i ly  long ar i thmet ic  

progressions. This result, one of Khintchine 's  "three pearls" of  number  theory  

([K1]), has served as an impetus  for numerous  extensions and refinements. Per-  

haps the most  famous among  these generalizations is t ha t  due to Szemer~di: if 

A C_ N has positive upper  density 

d(A) = l imsup  IAM { 1 , 2 , . . . , N } I  > 0, 
N-~o~ N 
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then A contains arbitrarily long arithmetic progressions ([S]). 

In 1977 Hillel Fhrstenberg gave a completely different, ergodic-theoretical 
proof of Szemer@di's theorem ([F1]) and started a new mathematical area, 

Ergodic Ramsey Theory. 

The ergodic approach has led to many new and powerful results, most of 

which still have no proof by conventional methods. (See, for example, [FK1], 

[FK2], [FK3], [BL1], [BL2], [L], [BMI], [BM3], [BL3], [FW1], [FW2].) 

Both van der Waerden's and Szemer@di's theorems deal with the additive 

structure of the integers. In this paper we shall address, among other things, the 

following question: are there interesting results, similar to Szemer@di's theorem 

but pertaining to the multiplicative rather than additive structure on N? It 

easily follows from van der Waerden's theorem that for any finite partition of N, 

one of the cells of the partition contains arbitrarily long geometric progressions 

(just pick any a E N and consider the restriction of the partition to the set 

{a n : n �9 N}). On the other hand, the set of square-free numbers which, as 

is well known, has (additive) density 6/7r 2, obviously contains no three-term 

geometric progressions. So, in order to even formulate a multiplicative analogue 

of Szemer@di's theorem, one has to have at his disposal an appropriate notion of 

largeness, which is geared towards the multiplicative structure of the integers. 

As we shall see in greater detail in the next section, each sequence of asymp- 

totically invariant sets in (N, .) (these are, roughly speaking, sets which do not 
change much under multiplication by integers, and will be defined more fully 

in Section 2) leads to a notion of multiplicative density which is good for our 
purposes. To concretize the discussion in this introduction, the reader may want 

to think of a set A C_ N as being multiplicatively large if for some sequence of 

positive integers (an)nEr~ 

limsup IA NanFnl  > O, 
n--+oo lanFnl 

il i2 i,~ where Fn = {PIP2 " " P n  : 0 < ij < n, 1 < j < n} ,  and where the sequence 
{p~} consists of the primes in some arbitrarily preassigned order. 

Remark 1.I: (i) In (N,+) one also has many notions of (additive) density, 

each corresponding to the averaging along a sequence of intervals [an, bn] with 

bn - an ~ co. It is not hard to show that, for a set A C_ N, Szemer~di's theorem 

implies (and is implied by) the fact that if, for a sequence of intervals [an, bn] 

with bn - an  -+ r one has 

IA N [a~, b~]l 
limsup ~ - ~ ~ ~ > O, 
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then A contains arbitrarily long arithmetic progressions. 

(ii) It is important  to note that  the notions of largeness based on additive 

and multiplicative densities do not overlap. For example, the set 2 N -  1 of odd 

1 along any sequence of intervals natural numbers clearly has additive density 

Jan, bn] with bn - an --+ co. On the other hand, it is not hard to show that  this 

set has multiplicative density zero along any averaging scheme in (N, .). Another 

example of this kind is provided by the set of square-free numbers mentioned 

above. In the other direction, consider the set S ~-  U n = l ~ 1 7 6  anFn where Fn are as 

defined above and the integers an satisfy an > IFnl for n = 1 ,2 , . . . .  It is easy 

to see that  S has zero additive density with respect to any sequence of intervals 

[an, bn] with b. - an --+ oo. At the same time, S has multiplicative density 1 

with respect to the sequence (anFn)~=l. (See Section 2 for more discussion and 

details.) 

As may be expected by mere analogy, multiplicatively large sets can be shown 

to contain arbitrarily long geometric progressions. It will, however, be shown 

that  multiplicatively large sets also contain various configurations which one 

expects to find in additively large sets, in particular arbitrarily long arithmetic 

progressions. As will become clear in Section 3, the somewhat unexpected 

presence of additive configurations in multiplicatively large sets is largely due to 

the fact that  additive structures are preserved by dilations. On the other hand, 

since multiplicative configurations are not preserved by additive translations, 

an example of a result provable using our methods is that  an additively large 

set contains additive translations of arbitrarily long geometric progressions. 

We shall give now a sample of results which are obtained in this paper. 

Definition 1.2: A finite set S C N is an A G  se t  o f  r a n k  k if there exist 

q, a, d E 5t with q > 1 such that  

S = {qJ(a +id)  : 0 <_ i , j  <_ k}. 

Clearly, the set S above contains both arithmetic and geometric progressions. 

Hence the term A G  set.  

The following result is a special case of Theorem 3.11, which is proved in 

Section 3. 

THEOREM 1.3: Let E C_ 51 be a multiplicatively large set. Then E contains 

AG sets of arbitrarily large rank. In particular, E contains arbitrarily long 

arithmetic and geometric progressions. 
r It follows from Theorem 1.3 that,  for any finite partit ion N = Ui=x Ci, any of 

the sets Ci which is multiplicatively large (and at least one Ci is such) contains 
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AG sets of arbitrarily large rank. While this partit ion result can also be obtained 

with the help of the two-dimensional version of the van der Waerden theorem, 

the proof of the following stronger statement utilizes more sophisticated multiple 

recurrence results. (See Theorem 3.12 below.) 

THEOREM 1.4: Let r ,n �9 N. For any finite partition N = ~rs= 1 Cs, there exist 

s �9 { 1 , 2 , . . . , r } ,  a,b �9 bl and d,q �9 C~ such that 

{bqJ(a + id) : 0 <_ i , j  < n} C Cs. 

In the following theorem (which appears as Theorem 3.15 in Section 3), 

arithmetic and geometric progressions are intertwined in a different fashion. 

THEOREM 1.5: Let E C_ N be a multiplicatirely large set. For any k �9 N, there 

exist a, b, d �9 N such that {b(a + id) j, 0 <<_ i, j <_ k} C E. 

The following two results involve IP sets. We remind the reader that,  given 

an infinite set S = {Hi, i = 1, 2 , . . .}  C_ N, the additive IP set generated by S is 

defined as the set of all finite sums of elements of S with distinct indices: 

IPa(S)  = F S ( { n i } ~ l )  = {nil § §  § nik : i1 < i2 < . . .  < ik ,k  �9 N}. 

Similarly, the multiplicative IP set generated by S, I p m ( s ) ,  is defined as the 

set of finite products: 

IBm(S)  = F P ( { n i } ~ x )  = {Hi, Hi2 ""nik  : il < i2 < ""  < ik ,k  �9 N}. 

Let ~ denote the set of finite non-empty subsets of N. We shall find it 

convenient to index the elements of IP sets by elements of ~ and write the 

typical element of IPa(S)  as as  := Y~-ies ni for a �9 ~-, and the elements of 

I p m ( s )  as 7r~ := H ie s  ni for a �9 U. IP sets, as well as IP* sets, which will be 

defined in the next section, form a natural framework for various refinements 

of both Ramsey-theoretical and ergodic results. (See, for example, [FK2] and 

[BM3].) By invoking the IF polynomial Szemer4di theorem from [BM3], one 

can prove the following theorem. (See Theorem 3.9 below.) 

THEOREM 1.6: Let B C_ N be a multiplicatively large set and let 

F = {Hi ,n2 , . . .  ,nk} C N. 

For any k polynomials Pl (n ), P2 (n ), . . . , Pk (n ) which have positive leading coef- 

ficients and which satisfy pi(O) = O, i = 1, 2 , . . . ,  k, there exist a, b �9 N such 

that {anP'(b),anP2(b),... ,anPk k(b)} C B. Moreover, the set 

{b �9 N: 3a with {ann'(b), C B} 
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is an additive IP* set. 

Finally, we shall formulate a theorem which involves both additive and 

multiplicative IP sets. Note that  it contains Theorem 1.3 as quite a special 

case. (Cf. Theorem 3.10 below.) 

THEOREM 1.7: Let E C_ N be a multiplicatively large set. For k E N, let a (i), 

a E 3 r,  i = 1 , 2 , . . . , k  be additive lP sets in N, andletzr  (j),/~ E / T , j  = 1 , 2 , . . . , k  

be multiplicative IP sets. Then there exist a, b E N and a,/3 E Jr such that for 

all i , j  E { 0 , 1 , . . . , k }  one has bTr(J)(a + a (i)) E E. 

The structure of the paper is as follows. In the next section, we collect 

the definitions of various types of large sets and give formulations of ergodic 

facts which are needed for derivation of results of the type described in the 

introduction. Section 3 is devoted to proofs. As will become clear, most of 

the results are based on applying available multiple recurrence theorems such 

as those obtained in [FK2] and IBM3]. One of the author 's  goals in this paper 

was to achieve a high level of readability. Since some of the results discussed in 

Section 3 are special cases of others, it can be said that  some results are stated 

multiple times. The author sincerely hopes that  his a t tempt  to make the paper 

accessible to as wide an audience as possible will not be perceived as an example 

of excessive verbosity. 

ACKNOWLEDGEMENT: I would like to thank Hillel Furstenberg, Sasha Leib- 

man and Ronnie Pavlov for their help in preparing this paper. I also thank the 

anonymous referee for constructive criticism and for suggesting an improvement 

in the formulation of Theorem 3.7. 

2. Va r ious  t y p e s  o f  l a rge  se ts  

In this section we shall summarize some facts about various notions of largeness 

which will be relevant for the discussion in the rest of the paper. Let (G, .) be a 

countably infinite (and for the purposes of this paper, always commutative and 

cancellative) semigroup. For a set S c_C_ G and an element g E G, let us define 

$/g := {x ~ G :  xg E S}. 

A set S C_ G is called s y n d e t i c  if for some finite set F C G one has UgeF S /g  

- -G .  

Syndetic sets in (N,+) or (Z ,+ )  are just sets with bounded gaps, and 

frequently appear in various mathematical situations. (Here is a sample: 
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(i) H. Bohr's definition of almost periodicity, (ii) von Neumann's ergodic theo- 

rem, (iii) uniformly recurrent points in topological dynamical systems.) Syndetic 

sets in (N,-) are perhaps less intuitive. The goal of the following discussion is 

to help the reader to feel more comfortable with syndetic sets in (N, .). 

We start with the trivial remark that  if S C_ (N, .) is syndetic, then for any 

m �9 N one has S M mN 7~ 0. It immediately follows that,  for a fixed m �9 N, 

none of the sets of the form {mn + i ; n  = 0 ,1 ,2 , . . .} ,  where i = 1 , 2 , . . . , m -  1, 

is multiplicatively syndetic, while the set mN clearly is. This simple example 

shows also that  an additive translation of a multiplicatively syndetic set may 

fail to be multiplicatively syndetic. 

Our next example concerns the multiplicative analogue of the partition of N 

into classes of residues modulo m. Let 

k 
81 82 = {pl p2 : i m o d m } ,  

j=-i 

i = 0 , 1 , . . . , m -  1. 

m - - 1  Clearly, N = Ui=0 Si and each Si is multiplicatively syndetic. 

Finally, consider the set A = Uk~__l [22k, 22k+1), where the intervals are taken 

in N. Since for any n �9 N either n or 2n belongs to A, A is multiplicatively 

syndetic. It is also obvious that  A is not additively syndetic. 

One usually meets syndetic sets either in the hypotheses of theorems or in 

their conclusions. When syndetic sets occur in the hypotheses, one would like 

to replace syndeticity by a weaker property, which often turns out to be the 

property of having positive density. For example, Szemer~di's theorem extends 

the van der Waerden theorem to the sets of positive density in (N, +). (Note 

that  the van der Waerden theorem, in one of its equivalent forms, states that  

any syndetic set in (N, +) contains arbitrarily long arithmetic progressions.) 

On the other hand, when syndetic sets appear as a part of the conclusion, 

one would like to replace syndeticity with a stronger notion of largeness which, 

desirably, should have the finite intersection property. For example, the so-called 

Khintchine's recurrence theorem (see [K2], and [B2], Section 5) states that,  for 

any probability measure preserving system (X, B, it, T) and for any e > 0 and 

A �9 B with it(A) > 0, the set 

RA = {n �9 N: #(A ClT-nA) > (p(A)) 2 - e} 

is syndetic in (N, +). One can, however, show that  the set RA has many addi- 

tional features and, in particular, the collection of sets (RA)AEB has the finite 

intersection property. (See, for example, [B2], pp. 35-36 and 49-50.) 
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The notion of an IP* set, which we shall presently introduce, is one of these 

desirable strengthenings of syndeticity and has already proved useful in ergodic 

theory and combinatorics. (See, for example, [F2] ch. 9, [FK2], [BM3].) In the 

following definition, we utilize the notation introduced in Section 1. 

Definition 2.1: A set A C_ 1N is an additive (multiplicative) IP* set if, for any 

infinite set S C N, one has IPa(S)nA ~ ~ (correspondingly, Ipm(s)AA ~ 0). 

By invoking Hindman's theorem ([H]), which states that,  for any finite parti- 

tion of N, one of the cells of the partition has to contain an IP set, one can show 

that,  if A is an additive (multiplicative) IP* set, then for any infinite S C_ N, A 

intersects with IPa(S) (Ipm(s)) along an IP set. This, in turn, implies that  

IP* sets have the finite intersection property. It is also not hard to see that  IP* 

sets are syndetic. On the other hand, it is easy to see that  not every syndetic 

set is IP*. (Consider, for example, the set 2N - 1 in (N, +) and the set 2N in 
(N, .).) 

Remark 2.2: The real key to both IP and IP* sets is provided by the topological 

algebra in fiN, the Stone-Cech compactification of N. See [B2), [B4], and [HIS] 

for more information. 

The notions of syndeticity and IP*-ness make sense in any semigroup. We 

shall discuss now a different notion of size which can be introduced only for 

amenable semigroups. 

Definition 2.3: Let (G, .) be a discrete semigroup. Denote by P(G) the set 

of all subsets of G. The semigroup G is called a m e n a b l e  if there exists a 

finitely additive probability measure # on 7)(G) satisfying #(A) = #(A/x) for 

all A E ~~ and x C G. 

It is well known that  all abelian semigroups are amenable and that  G is 

amenable if and only if there exists an invariant mean for G, namely a positive 

linear functional L on the space B(G) of bounded real-valued functions on G 

satisfying the following conditions: 

(i) L ( l a )  = 1. 

(ii) L(fs) = L(f) for all f in B(G) and s in G, where ]s(x) := ](xs). 
If G is an abelian countable semigroup with cancellation law (such as (N, +) 

or (N, .)), amenability is also equivalent to the following property: 

(iii) G possesses a Folner sequence, i.e. a sequence of finite sets F,, C G such 
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that  for any g E G one has 

IgFnAFnl _ IFna(FJg)l 
~0. 

For example, in (N, +), any sequence of intervals [an, bn] with bn - an --+ co 
is a F01ner sequence. 

As for (N, .), let (an)nON be an arbitrary sequence in N and let 

il i2 in Fn -= {anpl P2 "" "Pn :0 _~ ij ~_ k j ,n , j  = 1 , 2 , . . . , n } ,  

where kj,n is a doubly indexed sequence of positive integers such that,  for every 

j ,  kj,n ~ co as n -+ co, and {Pn} is the set of primes. 

It is not hard to check that  the sets Fn form a Fr sequence in (N, .). Given 

a F01ner sequence {Fn} and a set A in G, one defines the (upper) density of A 

with respect to {Fn} as 

= l imsup ]A n 
IFnl 

One can show that  a set A C_ G has positive upper density with respect to 

some F01ner sequence if and only if there exists an invariant mean L on B(G)  
such that  L(1A) > 0. The following two immediate properties of density d{F~} 

will be frequently used in the sequel. 

(i) If d{F~}(A) > 0 and A = A1 U A2 U . . .  U At, then one of the Ai satisfies 

-d{Fn}(Ai) > O. 
(ii) For any F01ner sequence {Fn} for (N, .), A C_ N and m E N, one has 

3{F~}(A) = -d{F,,}(mA) = -d{p,~}(A/m). 

We shall call sets which have positive density with respect to a F01ner 

sequence in (N,.) (respectively, (N,+)) mu l t ip l i ca t ive ly  (respectively, 

add i t ive ly )  large.  

In his proof of Szemer6di's theorem ([F1]), Furstenberg established a con- 

nection between additively large sets and measure preserving systems. One 

can verify that  Furstenberg's correspondence principle actually applies to any 

discrete amenable semigroup (cf., for example, IBM2], Theorem 2.1 and [B3], 

Theorem 6.4.17.) The following version of Furstenberg's correspondence princi- 

ple for large sets in (N, .) will be utilized in the next section. 
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THEOREM 2.4: Let {Fn} be a F01ner sequence in (N, .) and assume that E C_ N 

is such that d{Fn)(E) > 0. Then there exists a probability space ( X , B , # ) ,  a 

measure preserving (N, .)-action (Tn)ncN on X and a set A E B with #(A)  = 

d{F~}(E) such that for any k E N and any n l , n 2 , . . .  ,nk E N one has 

3~Fn~(E/nl n E/n2 n . . .  n E/nk) > ~(TjllA n T,721A n . . .  n Tj,1A). 

In particular, for any nl ,  n 2 , . . . ,  nk such that  p(T~lAMT~21AM .. .MT~IA)  > 

0, one has E/n1 N E/n2  [~ . . .  • E / n k  7s ~ and hence for some m C N, E D 

{~n~, ran2, . . . ,  mn~ }. 
It follows from the Fhrstenberg-Katznelson IP Szemer~di theorem, proved 

in [FK2], that,  for any k E N, any k commuting measure preserving actions 

(Tg(i))g~G, i = 1, 2 . . . .  , k, of an abelian group G on a probability space (X, B, #), 

and any A C B with #(A) > 0, there exists c > 0 such that  the set 

tg ~ G: ~(A n T~'A n T~/A n . . .  n T~(~/A) > c} 

is an IP* set in G. (IP and IP* sets in any abelian semigroup are defined in 

complete analogy to IP and IP* sets in N.) 

It is not hard to verify that  this result extends to measure preserving ac- 

tions of cancellative abelian semigroups. In the next section, it will be utilized 

for measure preserving (N, +)- and (N,-)-actions and often referred to as the 

IP Szemer~di theorem (although the main theorem proved in [FK2] is much 

stronger). 

We shall also use in Section 3 the following combinatorial result, which follows 

from the IP Szemer~di theorem via Furstenberg's correspondence principle. 

THEOREM 2.5: Let El ,  E2 be, respectively, additively and multiplicatively large 

sets in N, and let k E N. Then: 

(i) The set of differences of length k arithmetic progressions contained in E1 

is an additive IP* set. 

(ii) The set of ratios of  length k geometric progressions contained in E2 is a 

multiplicative IP* set. 

The following stronger combinatorial result also follows from [FK2] and will 

be needed for the proof of Theorem 1.7 formulated in the Introduction. 

THEOREM 2.6: Let El ,  E2 be, respectively, additively and multiplicatively large 

sets in N, and let k E N. Then: 

(i) For any additive IP sets (a(~i))a~j:, i = 1, 2 , . . . ,  k, there exist a E E1 and 

a E iP such that 

(a,a + o(~l,a + ~(:),.. . ,a + ~(21} C El. 
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(ii) For any multiplicative IP sets (7r(~O)aEf , i = 1, 2 , . . . ,  k, there exist b E E2 

and/~ E .F such that 

t ,  ( 1 ) ,  (2) bTr (k)} C E2. o, 07r~ ,07I]3 , . . . ,  

Finally, we formulate a corollary from the IP polynomial Szemer~di theorem 

([BM3]), which we will also use in the next section. 

THEOREM 2.7: Let k E N and let T1,T2, . . .  ,Tk be commuting measure pre- 

serving transformations acting on a probability space (X,/3, #). For any A E/3 

with #(A)  > O, and any polynomials p l ( n ) , p 2 ( n ) , . . . , p k ( n )  E Z[n] with zero 

constant terms, the set 

{n : # (A  M T1;I (n)A M T~v2(n)A M. . .  M TkPk(~)A) > 0} 

is an additive IP* set. (If the transformations Ti are not invertible, then it is 

assumed that the polynomials pi (n) have positive leading coefficients.) 

3. C o m b i n a t o r i a l  r ichness  of  mul t ip l i ca t ive ly  large se ts  

The following result, obtained in [B1], will be repeatedly used in this section. 

THEOREM 3.1: Let (X ,8 ,# )  be a probability space and let, for some c > O, 

An E /3, n = 1, 2 , . . . ,  be sets satisfying #(An)  >_ c for all n. Then there exists a 

set S C N with 

d(S) = limsup [SM {1 ,2 , . . . ,N}[  > c 
N-~oc N - 

such that for any finite subset F C S one has #(NnEF An) > O. 

Note that,  by Szemer~di's theorem, the set S featured in the formulation of 

Theorem 3.1 contains arbitrarily long arithmetic progressions. This leads to the 

following immediate application. 

THEOREM 3.2: Any  multiplicatively large set E C_ N contains arbitrarily long 

arithmetic progressions. 

Proof: Invoking Furstenberg's correspondence principle, as formulated in 

Theorem 2.4 above, let (X,/3, #, (Tn)nEv~) be the corresponding measure pre- 

serving system and let A E /3 be the set of positive measure corresponding to 

E. Let An -~ T n l A .  Clearly, #(An) = #(A) for all n E H. By Theorem 3.1 

there exists an additively large set S with the property that  for any finite F C S 

one h a s  P(NnEF Tn 1A) > O. Using Szemer~di's theorem, we get, for arbitrary 
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k E N, an arithmetic progression Pk = {n + id, i = O, 1 , . . . , k  - 1} C S such 

that  "( ~ TnIA) > O" 
nE Pk 

Applying again Furstenberg's correspondence principle, we see that  the set 

NnePk E / n  is multiplicatively large and, in particular, non-empty. This im- 

plies that  for some m E N, E D mPk. I 

Remark 3.3: Note that  it follows from Furstenberg's correspondence principle 

that  for any finite set F C S the set NnEF E / n  is multiplicatively large. This 

fact will be utilized in the proof of Theorem 3.10 below. 

By utilizing in the proof of Theorem 3.2 the IP version of SzemerSdi's theorem 

(see Theorem 2.5(i)), one gets the fact that,  for a fixed k E N and IP set I p a ( s ) ,  

any multiplicatively large set contains progressions of the form {m(a + id), i -- 

1 , 2 , . . . , k  - 1} where d E I p a ( s ) .  This fact, in its turn, is contained in the 

following stronger statement, the proof of which incorporates Theorem 2.7. 

THEOREM 3.4: Let E be a multiplicatively large set. For any k E N, 

additive IP set IPa(S) ,  and polynomials p l (n ) ,p2 (n ) , . . . , pk (n )  E Z[n] 

satisfying pi(0) = 0, i = 1, 2 , . . . ,  k, there exist a, b E N and d E IPa(S)  such 

that E D {b(a + pi(d)),i  = 1,2 . . . .  ,k}. 

As a mat ter  of fact, Theorems 3.2 and 3.4 are special cases of the following 

general proposition, which can be proved by the same method. 

THEOREM 3.5: Let S C jz be a family of finite sets with the property that 

any additively large set in N contains a configuration of the form a + F, where 

F E S. Then any multiplicatively large set contains a configuration of the form 

b(a + F), where a, b E N, F E S. 

Following I. Ruzsa, let us call a set S C_ N i n t e r s e c t i v e  if for any additively 

large set E C_ N one has (E - E) M S r 0. (Here, E - E is the set of positive 

differences of members of E.) It is not too hard to check that  any set con- 

taining either arbitrarily long progressions of the form {d, 2 d , . . . ,  kd} or, more 
k generally, arbitrarily large sets of sums {~i=1 Qbi,~i = 0, 1,i = 1, 2 , . . . ,  k} is 

an intersective set. It follows from Theorem 3.2 that  for any additively large set 

E C_ N and any multiplicatively large set B C_ N one has (E - E) M (B - B) ~ 0. 

This fact is a special case of the following stronger proposition. 
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THEOREM 3.6: For a set C C_ N and k E N, denote by Dk(C) the set of 

differences of  length k arithmetic progressions contained in C: 

Dk(C) = {d E N : 3c E C : c,c + d , . . . , c  + ( k -  1)d E C}. 

Let n, k E N be fixed. For any additively large sets El ,  E2, . . . , En C_ N and any 

multiplicatively large set B C_ N one has 

Dk(E1) n Dk(E2) N . . . N Dk(En) N Dk(B)  ~ 0. 

Proof: To make the proof shorter and the main ideas more transparent, we 

give a proof using ergodic language. We remark first that if a set S _c N contains 

arbitrarily long arithmetic progressions of the form {t, 2 t , . . . ,  kt}, then for any 

measure preserving system (X, B, #, T) and A E /3 with #(A) > 0 there exists 

d E S such that 

#(A  N T - d A  n T -2dA  n . . .  n T - kd A)  > O. 

(This actually follows from Szemer~di's theorem. See, for example, [BHMP], 

Theorem F2, p. 548.) An example of a set S with this property is S = Dk(C) 

for C such that, for every k, Dk(C) ~ 0. Let now (Xi,  13i, #i, Ti) and Ai E B with 

#i(Ai) > 0 be the measure preserving systems and sets of positive measure which 

correspond to the sets Ei via Furstenberg's correspondence principle (applied 
here to the additively large sets Ei.) Let (X, B, #, T) be the product system and 
let A = A1 x A2 x . . .  • An. By Theorem 3.2 and the remark above, 

{d E N : # (A  A T - d A N  T-2dA  N . . . N T - k d A )  > 0} NDk(B) ~ 0, 

which implies that 

n 

n { d  E N : #i(Ai  n Ti-dAi n T~-2dAi n . . . n Ti-kdAi) > 0} N Dk(B)  ~ 0. 
i----1 

Returning back to the sets Ei, we get by the Furstenberg correspondence 

principle that Dk(E1) n Dk(E~) N . . .  n Dk(En) n Dk(B)  ~ 0. I 

The following theorem may be viewed as a sort of weak dual form of 

Theorem 3.6. 

THEOREM 3.7: For a set C C_ N and k E N, denote by Rk(C) the set of ratios 

of length k geometric progressions contained in C: 

Rk = (q : 3c E C : c, cq, cq2 , . . . , cq  k-1 E C).  
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For any multiplicatively large sets B1, B 2 , . . . ,  Bn C_ N, any additively large set 

E, and any 1 C N, one has Rk(B1) M Rk(B2) M. . .  M Rk(Bn) M DI(E) ~ 0. 

Proo~ We are going to imitate the proof of Theorem 3.6. We remark first 

that  for any additively large set E and k, 1 E N, there exists n E N such that  

{n, n2, . . .  ,n k} C DI(E). This fact follows immediately from the polynomial 

Szemer6di theorem (see [BL1], [BM1]), which implies that,  for any finite set of 

polynomials pi(n) E Z[n], i = 1, 2 . . . .  , m, with pi(0) = 0 for each i, there exists 

a such that  {a, a + pl(n),  a + P2 (n ) , . . . ,  a +Pm (n) } C E. 

Our next remark is that  if a set S C_ N contains arbitrarily long geometric pro- 

gressions of the form {m, m 2 , . . . ,  mk}, then for any measure preserving action 

of (N, .) on a probability space (X,/3, #) and any A E/3 with p(A) > 0, there 

exists n E S such that  #(A M T n l A  M T-~IA M " "  M T~IA) > 0. (The existence 

of n E N with #(A M T n l A  M Tn-~IA M-'- M T'~IA) > 0 follows, for example, from 

the corollary of the Furstenberg-Katznelson IP Szemer6di theorem formulated 

at the end of Section 2. The fact that  n can be chosen from S follows from an 

argument analogous to that  used in the proof of Theorem F2 in [BHMP].) 

The rest of the proof is similar to that  of Theorem 3.6 and is left to the 

reader. I 

The results obtained so far in this section pertain mostly to configurations 

of an additive nature found in multiplicatively large sets. Direct application of 

available multiple recurrence theorems (such as those obtained in [FK2], [BL1], 

or [BM3]) shows that  multiplicatively large sets contain plentiful multiplicative 

configurations as well. One of the fruitful approaches to the study of configura- 

tions in large sets is to look for "geometric" images of finite sets. For example, 

it is not hard to verify that  Szemer6di's theorem is equivalent to the fact that  

if E C_ N is an additively large set, then for any finite set F C N one can find 

an affine image of F inside E. In other words, for any finite set F there are 

a,b E N such that  a +  bF = {a + bn, n E F} C E. 

In the following proposition, we collect some similar facts about multiplica- 

tively large sets. 

THEOREM 3.8: Let B C_ N be a multiplicatively large set and let 

F = {n l , n2 , . . . , n k }  C N. 

Then: 

(i) There exist a, b E N such that a + bF = {a + bn, n E F} C B. 
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(ii) There exist a, b E N such that {an b, n E F}  C B. Moreover, the set 

{b E N : 3a with an b E B, n E F}  is an additive IP* set. 

(iii) There exist a, b E N such that {ab n, n E F}  C B. Moreover, the set 

{b E N : 3a with ab n E B, n E F}  is a multiplicative IP* set. 

Remark: It clearly suffices to consider F of the form {1, 2 , . . . ,  k}. 

Proof: Statement (i) follows immediately from Theorem 3.2. As for statements 

(ii) and (iii), they both follow - -  via the Furstenberg correspondence principle - -  

from an appropriately chosen version of the IP Szemer~di theorem. Accordingly, 

we shall confine our discussion to the relevant ergodic statements. Let (Tn)ncN 

be a measure preserving action of (N, .) on a probability space (X, B, #). Let 

Tnl, Tn2,. . . ,Tnk be the elements of the action (T,~)ncN corresponding to the 

elements of F.  By the IP Szemer~di theorem, applied to commuting (N, +)- 

actions (T~,)beN, we see that  for any A E B with #(A) > 0 the set 

{b E N : #(A M T~bA A T~bA M. . .  A T~bA) > 0} 

is an additive IP* set. To see that  this gives us (ii), it remains only to rewrite 

this set as {b E N : #(NneF T-~ 1A) > 0} and to apply the Furstenberg corre- 

spondence principle. 

Similarly, statement (iii) follows by considering commuting (N, .)-actions 

(Tb~,)beN, i = 1 , 2 , . . . , k ,  where, as before, ni are the elements of F.  

Applying again the IP Szemer~di theorem, we obtain the fact that  the set 

{b : #(NncF T~ 1A) > 0} is a multiplicative IP* set, which gives (iii). I 

By using the IP polynomial SzemerSdi theorem ([BM3]), one can obtain a 

further refinement of Theorem 3.8. Here is, for example, a polynomial extension 

of statement (ii). 

THEOREM 3.9: Let B C_ N be a multiplicatively large set and let 

F = { n l , n 2 , . . . , n k }  C N. 

For any k polynomials pl(n),  P2 (n ) , . . . , pk  (n) which have positive leading 

coet~cients and which satisfy p~(0) = 0, i = 1 ,2 , . . .  ,k, there exist a,b E N 

such that (~'Olfr~Pl(b), t*'~2"~P2(b) , . . . .  , an pk(b) } C B. Moreover, the set 

{b E N: 3a with {anP'(b),an~2(b),... ,anPk k(b)} C B}  

is an additive IP* set. 

Proof: The general scheme of the proof being identical to that  of the proof of 

(ii) in Theorem 3.8, we shall formulate only the relevant recurrence theorem. 
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Let Tn~, i = 1 ,2 , . . . ,  k be the measure preserving transformations defined in 

the course of the proof of Theorem 3.8. It follows from Theorem 2.7 that  for 

any A E 13 with #(A) > 0, the set 

{b e N:  #(A M T~PI(b)A M.. .  N T~fk(b)A) > 0} 

is an additive IP* set. The rest of the proof is identical to the proof of statement 

(ii), Theorem 3.8. I 

We will conclude this section by discussing some mixed "additive-multipli- 

cative" configurations such as the AG sets defined in the introduction. The 

following theorem is an extension of Theorem 3.5 above. 

THEOREM 3.10: Let S a, sm  C_ jz be two families of finite subsets of N with 

the following properties: 

(i) Any additively large set in N contains a configuration of the form a + F, 

where F E sa. 

(ii) Any multiplicatively large set in N contains a configuration of the form 

bF, where F E 8m. 

Then any multiplicatively large set E contains a configuration of the form 

bF.2 (a + F1), where FIE  $~ and F2 E 8 m. 

Proof'. By using the Furstenberg correspondence principle and Theorem 3.1, 

we can find F1 E S a such that  for some a E N the set N,~EF1 E/(a  + n) is 

multiplicatively large. (See Remark 3.3.) By the assumption (ii), there exist 

b E N and F2 E sm such that  N ~ c F 1 E / ( a + n )  D bF2. This implies that  

E D bF2 (a + F1) and we are done. I 

Invoking Theorem 2.5, we get the following immediate corollary. 

THEOREM 3.11: Let E C_ N be a multiplicatively large set. Let Sa, $2 C N be 

two infinite sets and let IPa(S1) and Ipm(s2)  be the additive and multiplicative 

IP sets generated by S 1 and $2 respectively. Then for any n E I~, there exist 

a,b E I~, d E IPa(S1), and q E IPm(S2) such that 

{bq j(a + id),O ~_ i , j  ~_ n} C E. 

It is known that  for any finite partition N r = Ui=l Ci, one of the Ci is both 

additively and multiplicatively large and, in addition, contains additive and 

multiplicative IP sets (see Corollary 3.16 in [BH1] or Theorem 4.5 in [BH2]). 

Applying Theorem 3.11, we get the following application to partition Ramsey 

theory. 
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T H E O R E M  3.12: Let r, n E N. For any finite partition N = Ui=l r  Ci, there exist 

i E {1,2 , . . . , r} ,  a,b E N and d,q E Ci such that 

{bqJ(a+id) ,O <_ i , j  < n} C Ci. 

The following result follows from Theorem 3.10 by invoking Theorem 2.6. 

Note that it contains Theorem 3.11 as a special case. 

THEOREM 3.13: Let E C_ N be a multiplicatively large set. For k E N, let a (i) , 

a E ~ ,  i = 1, 2 . . . .  , k be additive IP sets in N, and let ~(J), fl E .~, j = 1, 2 , . . . ,  k 

be multiplicative IP sets. Then there exist a, b E N and a, fl E Y: such that for 

all i , j  E {0, 1 , . . . ,  k} one has b~r(J)(a + a(~ ~)) E E. 

We shall conclude this Section with the proof of Theorem 1.5 from the intro- 

duction. In the course of the proof, we shall utilize the following multiplicative 

analogue of Theorem 3.1, the proof of which is practically identical with that of 

Theorem 1.1 in [B11 (our Theorem 3.1 above) and is omitted. 

THEOREM 3.14: Let ( X,  B, it) be a probability space and suppose that for some 

c > 0 and a n y n  E N, the sets An E 13 sa t i s f y# (An)  >_ c. For anyFolner  

sequence ( In )  in (N,-) there exists a set P C N such that d{E,~}(P) >_ c and for 

any finite subset F C P, one has #(An~F An) > O. 

THEOREM 3.15: Let E _C N be a multiplicatively large set. For any k E N, 

there exist a,b, d E N  such that {b(a + id)J,O <_ i , j  <_ k} C E. 

Proof: Let (X, B, #, (Tn)neN) and A E/~ with #(A) > 0 be the ergodic model 

which corresponds to the set E by Theorem 2.4. By the IP Szemer~di theorem, 

there exists a constant c > 0 such that the set 

S = {n: #(A M T ~ I A  M Tn-:IA n . . .  M T-klA) > c} 

is a multiplicative IP* set and, hence, multiplicatively syndetic. Letting 

An = A M T n l A M T ~ I A M  "'" M T~IA, n E S, and applying Theorem 3.14 to the 

family (An)n~S, we get a set P C S which, due to the syndeticity of the set S, 

is multiplicatively large and such that, for any finite F C P, #(NneF An) > O. 

We move now back to the set E. Letting En : E M ( E / n )  M(E/n2)M "" "M(E/n k) 

and invoking Theorem 2.4, we see that for any finite F C P, NnSF En ~ 0. By 

Theorem 3.2, there exist a, d E N such that P ~ {a + id, i -- 1, 2 . . . .  , k}. This 

implies that 
k 

S k : : ~ ' / E a + i d =  N E / ( a + i d )  j ~O.  
i : 0  O~_i,j~k 
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Taking any b E Sk gives { b( a + id) j, 0 <_ i, j ~ k} C E and we are done. | 
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